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Abstract

Speech tokenizers serve as foundational components for speech language mod-
els, yet current designs exhibit several limitations, including: 1) dependence on
multi-layer residual vector quantization structures or high frame rates, 2) reliance
on auxiliary pre-trained models for semantic distillation, and 3) requirements for
complex two-stage training processes. In this work, we introduce the Text-aware
Diffusion Transformer Speech Codec (TaDiCodec), a novel approach designed
to overcome these challenges. TaDiCodec employs end-to-end optimization for
quantization and reconstruction through a diffusion autoencoder, while integrating
text guidance into the diffusion decoder to enhance reconstruction quality and
achieve optimal compression. TaDiCodec achieves an extremely low frame rate of
6.25 Hz and a corresponding bitrate of 0.0875 kbps with a single-layer codebook
for 24 kHz speech, while maintaining superior performance on critical speech
generation evaluation metrics such as Word Error Rate (WER), speaker similarity
(SIM), and speech quality (UTMOS). Notably, TaDiCodec employs a single-stage,
end-to-end training paradigm, and obviating the need for auxiliary pre-trained
models. We also validate the compatibility of TaDiCodec in language model
based zero-shot text-to-speech with both autoregressive modeling and masked
generative modeling, demonstrating its effectiveness and efficiency for speech
language modeling, as well as a significantly small reconstruction-generation
gap. We will open source our code and model checkpoints. Audio samples are are
available at https:/tadicodec.github.io/. We release code and model check-
points at https://github.com/open-mmlab/Amphion/tree/main/models/
tts/tadicodec.

1 Introduction

Recent advances have been made in both large language model (LLM)-based text-to-speech (TTS)
systems [1, 2, 3, 4, 5, 6, 7, 8, 9] and spoken language models [10, 11, 12, 13, 14, 15, 16, 17, 18].
At the core of these systems lies the speech tokenizer, which converts continuous speech signals
into discrete token sequences, thereby enabling the application of textual LLM paradigms to speech
modeling. Beyond this, speech tokenizers play a fundamental role in bridging the text and speech
modalities, forming the basis for cross-modal learning, alignment, and generation.

However, most existing speech tokenizers are suboptimal for speech language modeling. Prior
works (e.g., EnCodec [19], SoundStream [20], DAC [21]) primarily target speech signal compression
and transmission, relying on multi-layer residual vector quantization (RVQ) and operating at high
frame rates and bitrates. Such configurations make modeling with language models challenging and
inefficient. More recently, several studies [5, 6, 22, 23, 24] have explored techniques for single-layer
speech tokenizers. However, these approaches still fall short in reconstruction quality compared to
RVQ-based tokenizers and often maintain high token rates (typically exceeding 50 tokens per second).
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Moreover, they usually depend on complex loss designs and adversarial training. Additionally,
many of these models primarily optimize for acoustic-level reconstruction, resulting in discrete
representations that lack semantic richness, making them suboptimal for language model modeling
and causing reconstruction-generation gap.

Recent studies [2, 3, 4, 10, 11, 25, 26] emphasize that effective speech tokens for language modeling
should exhibit low frame rates and semantic richness, which criteria that directly shape the design
of modern speech tokenizers. To achieve this, several works [10, 25, 26, 27] decompose speech
into semantic and acoustic tokens by distilling features from speech self-supervised learning (SSL)
models [28, 29, 30, 31]. In this framework, semantic tokens exhibit improved alignment with
textual representations, thereby facilitating more effective language modeling. However, preserving
reconstruction quality often requires RVQ, along with intricate loss functions, adversarial objectives,
and the integration of external SSL models. An alternative line of work, including systems such
as CosyVoice [3], SeedTTS [2], FireRedTTS [4], and Vevo [32], adopts a two-stage design: first
quantizing SSL-derived features, then training a separate diffusion model [33, 34, 35] to reconstruct
speech conditioned on these tokens. While this design enables relatively low frame rates and supports
a single-layer token representation, it comes with several limitations: 1) Two-stage training: the
pipeline introduces greater architectural complexity and reduced training efficiency compared to
end-to-end approaches; 2) External dependency: it relies on pre-trained SSL or supervised models
for semantic feature extraction; and 3) Struggle with extreme compression: most systems fail to
achieve ultra-low token rates (e.g., fewer than 20 tokens per second), which are critical for modeling
efficiency and scalability.

To address the limitations of current speech tokenizers, we propose the Text-aware Diffusion Trans-
former Speech Codec (TaDiCodec), a novel model that achieves an exceptionally low frame rate
of 6.25 Hz using a single codebook, corresponding to a bitrate of 0.0875 kbps for 24 kHz speech.
Despite this ultra-low rate, TaDiCodec delivers high-fidelity speech reconstruction and robust per-
formance on downstream speech language modeling tasks. Specifically: 1) TaDiCodec unifies
quantization and reconstruction within an end-to-end diffusion autoencoder, removing the need
for separate semantic distillation or complex adversarial objectives by relying solely on diffusion
loss; 2) it enhances reconstruction quality and compression efficiency by incorporating text and
prompt guidance into the diffusion decoder. Our design is motivated by the increasing availability
of transcriptions from automatic speech recognition (ASR) systems [36, 37], and the widespread use
of paired speech-text data in generative applications. In zero-shot TTS scenarios, for instance, the
target text is inherently available; in end-to-end spoken language systems, speech and text tokens are
typically generated jointly [12, 13, 14, 15, 16, 17, 38].

Our experiments show that TaDiCodec achieves performance comparable to or better than existing
speech tokenizers in both reconstruction and downstream speech generation, while maintaining a
significantly smaller gap between reconstruction and generation. In addition, it adopts a much simpler
pipeline and operates with much fewer tokens. We evaluate zero-shot TTS using TaDiCodec under
both autoregressive and masked language modeling settings, achieving strong results in intelligibility,
speaker similarity, speech quality, and overall training and inference efficiency. A comparison with
other tokenizers is presented in Figure 1 and Table 1.

The contributions of our work are summarized as follows:

• We propose TaDiCodec, a novel speech tokenizer with a token rate of 6.25 Hz and a bitrate
of 0.0875 kbps, based on a diffusion autoencoder that jointly performs quantization and re-
construction without adversarial training, external pretrained models for semantic distillation,
or multi-stage training. This design enables efficient optimization and simplifies the speech
tokenization pipeline.

• We introduce text-aware and prompt-guided decoding into the diffusion process to facilitate ex-
treme compression. By leveraging paired speech-text data, this approach enhances reconstruction
quality and enables high intelligibility, speaker similarity, and speech quality under ultra-low
token rates.

• We build zero-shot TTS models using our tokenizer under both autoregressive and masked
language modeling settings, achieving WERs of 2.28 and 1.19 on SeedTTS test-en and test-zh,
respectively. Our models demonstrate notable improvements on challenging benchmarks such
as articulatory, code-switching, and cross-lingual test sets, and support real-time inference with
RTFs ranging from 0.12 to 0.29 across different model sizes.
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Figure 1: Comparison between TaDiCodec and other speech tokenizers. We use a three-
dimensional coordinate system to display the performance across three dimensions: the x-axis
represents WER, the y-axis represents UTMOS, and the z-axis represents SIM. The size of the
markers is proportional to the kbps value.

2 Related Work

Discrete Speech Tokenizer Discrete speech tokenizers convert continuous speech into discrete
tokens, enabling modern zero-shot TTS and speech language modeling. Early tokenizers [19, 20, 21]
focused on audio compression, relying on residual vector quantization (RVQ) [20, 39] and operating at
high frame rates and bitrates, settings ill-suited for language modeling. Recent work has shifted toward
designing tokenizers tailored for language modeling, emphasizing low frame rates [10, 26], semantic-
rich representations [4, 5, 6, 10, 25, 26, 27, 32, 40, 41], and single-layer codebooks [22, 23, 24].
Diffusion-based methods [33, 34] have gained popularity for their performance at low token rates and
scalability. However, they typically follow a two-stage pipeline: extracting tokens via self-supervised
speech representations [28, 29, 30, 31, 36, 42], then reconstructing waveforms through diffusion. For
example, [43, 44] apply diffusion to improve de-tokenization quality, but still operate at relatively
high token rates. Achieving ultra-low bitrates (e.g., below 0.2 kbps or 20 tokens/s) with a compact,
generative-friendly framework remains a major challenge.

Zero-shot TTS Modern zero-shot TTS systems typically operate on discrete speech tokens using
either autoregressive (AR) language modeling [1, 2, 3, 4, 5, 6, 8, 9, 41] or masked generative
(language) modeling (MGM) [7, 45, 46, 47]. Some models [2, 3, 4, 7, 41] adopt an “AR + diffusion”
framework, where a diffusion decoder enhances waveform quality based on predicted tokens. Zero-
shot TTS is also foundational in recent end-to-end spoken language models. For example, Qwen2.5-
Omni [18] uses a “talker” module to generate speech tokens from the text output of a “thinker.”
Similar architectures [15, 16] decode speech directly from text, while others [11, 12, 14, 17] leverage
TTS models to synthesize large-scale speech corpora for training dialogue agents.

3 Method

3.1 TaDiCodec

Speech Tokenization with Diffusion Transformer Autoencoder Some speech tokenizers adopt
raw waveform signals as modeling targets. However, raw waveforms often contain a considerable
amount of redundant information. In this work, we instead adopt the mel-spectrogram as both
the input and reconstruction target for the tokenizer, given its compactness and ease of inversion
to waveform using vocoder models [48, 49]. Formally, we denote the input mel-spectrogram as
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𝒙 ∈ R𝑇×𝑑 , where 𝑇 denotes the number of frames, corresponding to the number of waveform
frames divided by the hop size. The tokenizer’s encoder E transforms 𝒙 into a sequence of latent
embeddings, i.e., E(𝒙). These embeddings are then quantized by the vector quantization (VQ)
module Q into a discrete token sequence 𝒒 = Q(E(𝒙)) ∈ Z𝑇𝑞×1, where 𝑇𝑞 is the length of the token
sequence, typically equal to 𝑇 divided by a predefined down-sampling factor. Each token 𝑞𝑖 (for
𝑖 ∈ [0, 𝑇𝑞)) corresponds to an index in a codebook. The decoder D subsequently reconstructs the
mel-spectrogram as �̂� = D(𝒒). Previous speech tokenizers primarily adopted generative adversarial
networks (GANs) [50] for training the system, typically operating on short speech segments (e.g.,
1–3 seconds) and employing CNNs as the backbone. However, GANs often suffer from issues related
to training stability and efficiency, and the reliance on CNN-based architectures and short-segment
training further constrains the model’s ability to capture long-range dependencies, leading to a focus
on only local acoustic patterns. To overcome these limitations, we use a fully Transformer-based [51]
architecture for both the encoder and decoder, and adopt a diffusion loss for reconstruction training,
enabling more stable optimization and improved modeling capabilities. Specifically, we adopt a flow
matching-based decoder [35, 52]. During training, we sample Gaussian noise 𝝐 and generate a noisy
target 𝒙𝑡 via a linear interpolation: 𝒙𝑡 = 𝑡𝒙 + (1 − 𝑡)𝝐 , where 𝑡 ∈ [0, 1] is a randomly sampled noise
level. The model is then trained to predict the velocity field 𝒗, defined as the derivative of 𝒙𝑡 with
respect to 𝑡, i.e., 𝒗 =

𝑑𝒙𝑡
𝑑𝑡

= 𝒙 − 𝝐 . We provide more details about flow matching in Appendix B.

DiT Decoder 

𝒟
Encoder

ℰ
Quantizer

𝒬𝑥 𝑣

𝑥!"#!

𝑥!

Figure 2: Training speech tokenizer with
diffusion autoencoder. We optimize tok-
enization and reconstruction end-to-end with
diffusion loss. The input 𝒙 is passed through
the encoder and quantizer to get Q(E(𝒙)),
which is then conditioned and input into the
DiT decoder to predict the velocity 𝒗 corre-
sponding to the noisy 𝒙𝑡 .

Binary Spherical Quantization For quantization,
we use Binary Spherical Quantization (BSQ) [53],
which does not rely on an explicit learnable code-
book. We first apply downsampling to the en-
coder output E(𝒙), followed by a linear projec-
tion to obtain a low-dimensional latent sequence:
𝒉 = Linear(Downsample(E(𝒙))) ∈ R𝑇𝑞×𝐿 , where
𝑇𝑞 is the number of quantized frames and 𝐿 is the
latent dimension. Each vector 𝒉𝑡 ∈ R𝐿 of 𝒉 is then
projected onto the unit sphere: 𝒖𝑡 =

𝒉𝑡

∥𝒉𝑡 ∥ . Binary
quantization is applied independently on each dimen-
sion: �̂�𝑡 =

1√
𝐿

sign(𝒖𝑡 ), where sign(𝑥) is the element-
wise sign function. To enable gradient flow through
the quantization step, we adopt a Straight-Through
Estimator (STE): signSTE (𝑥) = sg(sign(𝑥) − 𝑥) + 𝑥,

where sg(·) denotes the stop-gradient operation. The quantized latent sequence �̂� ∈ R𝑇𝑞×𝐿 is
then mapped back to the 𝑑-dimensional space and upsampled to the original temporal resolution:
Upsample(Linear(�̂�)) ∈ R𝑇×𝑑 . Each quantized vector 𝒉𝑡 corresponds to a discrete token index
computed by:

𝑘𝑡 =

𝐿∑︁
𝑖=1

1[𝒉𝑡,𝑖>0] · 2𝑖−1, (1)

where 1[ · ] is the indicator function. As noted in [53], BSQ can be optimized without the need for a
commitment loss [54], since its quantization error is theoretically bounded. This property enables
end-to-end training of the system using only the diffusion loss. See Appendix C for further details.

Text-aware De-Tokenization Most existing speech tokenizers rely solely on speech features
for reconstruction. However, in the context of speech language modeling, the corresponding text
associated with the speech is often readily available. For example, in TTS, the target text is always
known, and in most end-to-end spoken dialogue systems, text and speech tokens are generated
jointly [10, 11, 12, 13, 14, 15, 16, 17, 18]. Motivated by this observation, we propose a text-aware
de-tokenization strategy, which conditions the diffusion decoder on the corresponding text sequence
𝒙𝑡𝑒𝑥𝑡 . To further improve reconstruction quality under the extremely low compression rate setting,
we introduce a prompt mechanism into TaDiCodec, similar to prior works [7, 55, 56, 57]. This
mechanism enables the model to better reconstruct speech when a prompt is provided, making it
particularly suitable for speech generation scenarios such as zero-shot TTS and the decoding stage
of spoken language models. Specifically, during training, we randomly sample a prefix 𝒙𝑝𝑟𝑜𝑚𝑝𝑡 from
the input mel-spectrogram by drawing a segment length 𝑙 ∼ Uniform(0, 0.25𝐿), where 𝐿 denotes
the total number of frames in the mel-spectrogram. The prefix is preserved without any added noise,
while the loss is computed solely on the noisy portion of the sequence. Table 4 shows this prompt
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mechanism yields substantial improvements in reconstruction performance. We also experiment with
removing text conditioning from the decoder and observe significant performance degradation under
extremely low token rate and bitrate settings. e.g., at a frame rate of 12.5 Hz, the WER exceeds 10.

Notably, Unlike prior works [2, 3, 4, 7, 11, 32, 40, 58] that adopt a two-stage pipeline: first training
a VQ model and then a separate diffusion model for de-tokenization, our tokenizer jointly learns
feature quantization and reconstruction in an end-to-end manner. The overall training objective
of TaDiCodec can be formulated as:

Ldiff = E(𝒙,𝒙𝑡𝑒𝑥𝑡 ) ,𝝐 ,𝑡
[
∥(𝒙 − 𝝐) − D𝜙 (Q(E𝜃 (𝒙)), 𝒙𝑡 , 𝑡, 𝒙𝑡𝑒𝑥𝑡 )∥

]
, (2)

where E𝜃 and D𝜙 are the encoder and decoder parameterized by 𝜃 and 𝜙. We ignore the prompt for
simplification. We also find that continuing to train the decoder while freezing the encoder and VQ
module can further improve performance.

3.2 Speech Language Modeling with TaDiCodec

Existing speech tokenizers often neglect their effectiveness in downstream speech language modeling
tasks and suffer from a pronounced reconstruction–generation gap. In this work, we apply our
tokenizer to large-scale multilingual zero-shot TTS, adopting an “AR + Diffusion” paradigm: an
autoregressive model first predicts speech tokens 𝒒 from text 𝒙𝑡𝑒𝑥𝑡 , which are then passed, along with
the text, to TaDiCodec’s diffusion decoder to generate speech. The AR model, parameterized by 𝜓, is
optimized to minimize the negative log-likelihood of the target token sequence conditioned on the
input text and previously predicted tokens:

LAR = −E(𝒒,𝒙𝑡𝑒𝑥𝑡 )

𝑇𝑞∑︁
𝑖=1

log 𝑝(𝒒𝑖 | 𝒒<𝑖 , 𝒙𝑡𝑒𝑥𝑡 ;𝜓), (3)

where 𝒒𝑖 is the 𝑖-th token of 𝒒. We also apply the non-autoregressive Masked Generative Modeling
(MGM) [7, 59] for modeling speech tokens. See more details about MGM in the Appendix D.

4 Experiments

We first describe the implementation details and datasets (Section 4.1). We then present the speech
reconstruction results of TaDiCodec in Section 4.2, including the main results (Section 4.2.1, Table 1),
multilingual performance (Table 2), subjective evaluation results (Table 3), and ablation studies on
tokenizer design (Section 4.2.2, Table 4). Section 4.3 reports the zero-shot TTS results of models
built upon TaDiCodec (Table 5), along with results on model size scaling and training and inference
efficiency (Table 6), and an analysis of the reconstruction–generation gap (Figure 3).

4.1 Experimental Settings

Datasets We use the Emilia [60] dataset to train all of our models. Emilia is a multilingual and
diverse in-the-wild speech dataset designed for large-scale speech generation. It contains 46.8K hours
of English, 49.9K hours of Chinese, 1.6K hours of German, 1.4K hours of French, 1.7K hours of
Japanese, and 0.2K hours of Korean.

Implementation Details We build TaDiCodec using standard Llama-style Transformer blocks [61],
with bidirectional attention instead of causal attention. The base configuration employs an 8-layer
encoder and a 16-layer decoder, each with hidden size 1024, intermediate size 4096, and 16 attention
heads. We further explore decoder variants; see Section 4.2.2 and Table 4 for details. We adopt RoPE
positional embedding [62] and RMSNorm [63]. For the text-aware diffusion decoder, RMSNorm
is modified to Adaptive RMSNorm to condition on the diffusion step embedding. Text tokens are
adapted from a pretrained LLM vocabulary [64, 65], and concatenated with speech features along the
time axis before being input to the decoder. For vector quantization, we use BSQ [53] with a latent
size of 14, yielding a codebook size of 214 = 16384. All models are trained on 8 80GB NVIDIA
A100 GPUs using dynamic batching with 200 seconds of speech per batch. We train the tokenizer
for 800K steps using AdamW [66] with a learning rate of 7.5 × 10−5 and 32K warmup steps. TTS
models are trained for 300K steps with a learning rate of 3 × 10−4 unless otherwise specified. AR
models extend the vocabulary of pretrained textual LLMs [3, 5] and are trained with 0.2B, 0.5B, 3.0B,
and 4.0B parameters; see Section 4.3 for analysis. For MGM models, we follow the setup of [7].
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Table 1: The comparison between TaDiCodec and other speech tokenizers. TaDiCodec offers an
extremely high compression rate, achieving a 6.25 Hz frame and token rate and a 0.0875 kbps bitrate
without requiring additional pretrained models for semantic distillation. It achieves comparable or
better reconstruction quality than other speech tokenizers, based on generation-related metrics.

System Frame Rate Token Rate Bitrate (kbps) Codebook Semantic Reconstruction Quality
Number Distill Free WER (↓) SIM (↑) UTMOS (↑)

Token rate less than 150

EnCodec [19] 75 150 1.5 2 ✓ 5.36 0.48 1.54
DAC (RVQ) [21] 25 75 0.75 3 ✓ 20.08 0.39 1.75
DAC (VQ) [21] 75 75 0.75 1 ✓ 12.74 0.45 2.08
SpeechTokenizer [27] 50 100 1 2 ✗ 7.98 0.46 2.47

Mimi [10] 12.5 75 0.825 6 ✗ 4.51 0.52 3.09
1.1 8 ✗ 3.99 0.57 3.21

DualCodec [26] 12.5 75 0.925 6 ✗ 2.63 0.62 3.78
1.225 8 ✗ 2.57 0.64 3.78

BiCodec [6] 16 kHz 50 50 0.65 1 ✗ 3.05 0.61 3.68
X-codec 2 [5] 16 kHz 50 50 0.8 1 ✗ 2.63 0.62 3.68
WavTokenizer [23] 75 75 0.9 1 ✓ 6.65 0.48 3.36
BigCodec [22] 16 kHz 80 80 1.04 1 ✓ 3.25 0.61 3.59
TAAE [24] 16 kHz 25 25 0.4 1 ✓ 11.08 0.41 3.87
Two stage, Diffusion decoder
SemantiCodec [40] 25 50 0.675 2 ✗ 5.11 0.49 2.83
Vevo Tokenizer [32] 50 50 0.65 1 ✗ 3.04 0.53 3.50
FireRedTTS Tokenizer [4] 25 25 0.35 1 ✗ 3.35 0.59 3.40
CosyVoice Tokenizer [3] 25 25 0.3 1 ✗ 5.63 0.47 3.65
CosyVoice 2 Tokenizer [41] 25 25 0.325 1 ✗ 4.10 0.68 3.65

Token rate less than 20

Two stage, Diffusion decoder
Ints Tokenizer [68] 12.5 12.5 0.175 1 ✗ 7.14 0.67 3.37
One stage, Diffusion decoder
TaDiCodec 6.25 6.25 0.0875 1 ✓ 3.02 0.67 3.68
TaDiCodec (w. dct)* 6.25 6.25 0.0875 1 ✓ 2.73 0.69 3.73
* “w. dct” denotes continued training of the decoder for 400K additional steps, with the encoder and VQ module frozen.

Evaluation We evaluate our approach from two main perspectives: speech reconstruction using
the proposed tokenizer (Section 4.2) and zero-shot TTS performance (Section 4.3). We assess
intelligibility (WER), speaker similarity (SIM), and speech quality (UTMOS). Speaker similarity is
computed as the cosine similarity between WavLM-TDNN embeddings of the prompt and generated
speech [28]. WER is measured using whisper-large-v3 [36] for non-Chinese languages and
paraformer-zh [37] for Chinese, following prior work [2, 3, 7, 58]. Speech quality is evaluated
using the official UTMOS checkpoint. In addition to objective metrics, we conduct subjective
evaluation via Comparative Mean Opinion Score (CMOS). We do not report signal-level metrics
(e.g., PESQ, STOI), as our focus is on generation-oriented performance, in line with [58, 67]. Further
Evaluation details are provided in Appendix F.

4.2 Speech Reconstruction

4.2.1 Main Results

We report our main results on SeedTTS test-en [2] in Table 1. We also evaluate our methods on
multilingual test sets in Table 2. Subjective evaluation results are show in Table 3.

Baselines We compare with a wide range of baselines in settings where the token rate is less than
150: 1) single stage with multi-layer codebook and adversarial training: EnCodec [19], DAC [21],
SpeechTokenizer [27], Mimi [10], DualCodec [26]; 2) single stage with single-layer codebook
and adversarial training: DAC (with single VQ), BiCodec [6], X-codec 2 [5], WavTokenizer [23],
BigCodec [22], TAAE [24]; 3) two stage with diffusion decoder: SemantiCodec [40], Vevo Tok-
enizer [32], FireRedTTS Tokenizer [4], CosyVoice [3] & CosyVoice 2 Tokenizer [41], Ints Tok-
enizer [68]. We provide more detailed description of these baselines in Appendix E.1.

Results Analysis 1) Compression: TaDiCodec demonstrates a significantly higher compression
rate compared to all baselines. It operates at a token rate of 6.25 Hz with a single-layer codebook,
resulting in a bitrate of 0.0875 kbps. Among the baselines, the closest in compression rate to
TaDiCodec is the Ints Tokenizer, which has double the token rate and bitrate of TaDiCodec. However,
it performs worse in terms of WER (7.14 vs. 2.73) and UTMOS (3.37 vs. 3.73) and requires two-stage
training and semantic distillation. All other baselines have a token rate greater than 25 and a bitrate of
at least 0.3 kbps. Compared to other single-stage and distillation-free models, BigCodec has a higher
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Table 2: Results of multilingual speech reconstruction. In addition to English, we evaluate on five
other languages: Chinese (zh), French (fr), German (de), Japanese (ja), and Korean (ko).

System Bitrate en zh fr de ja ko
(kbps) WER SIM WER SIM WER SIM WER SIM WER SIM WER SIM

Mimi [10] 1.1 3.99 0.57 2.87 0.59 20.71 0.55 16.12 0.59 25.71 0.44 36.10 0.57
BiCodec [6] 16 kHz 0.65 3.05 0.61 1.97 0.66 17.74 0.57 11.98 0.64 20.50 0.49 29.39 0.63
FireRedTTS Tokenizer [4] 0.35 3.35 0.59 1.99 0.68 20.16 0.56 13.87 0.61 18.57 0.48 32.20 0.62

TaDiCodec (w. dct) 0.0875 2.73 0.69 0.94 0.75 20.29 0.69 11.77 0.73 20.22 0.59 26.80 0.74

WER (3.25 vs. 2.73) and lower SIM (0.61 vs. 0.69) than TaDiCodec, with a bitrate of 1.04 kbps.
Models with lower bitrates, such as TAAE, still have bitrates four times higher than ours and perform
significantly worse in WER and SIM. Other single-layer codebook tokenizers like BiCodec, X-codec
2, and WavTokenizer have bitrates 7.4, 9.1, and 10.3 times higher, respectively. 2) Reconstruction
Quality: In terms of WER, TaDiCodec achieves a score of 3.02 without decoder continued-training
and 2.73 with fine-tuning, ranking just behind DualCodec and X-codec 2, which have scores of 2.57
and 2.63, respectively, but with bitrates 10.6 and 9.1 times higher. Table 4 shows that our setting
with a bitrate of 0.175 kbps achieves the best WER. In terms of SIM, TaDiCodec with decoder
continued-training achieves the best SIM of 0.69, while even without decoder continued-training, it
reaches 0.67, surpassing all baselines except for the CosyVoice 2 tokenizer. In terms of UTMOS, our
model achieves scores of 3.68 and 3.73 (with and without decoder continued-training), ranking just
behind DualCodec and TAAE, which have scores of 3.78 and 3.87. However, these models operate at
much higher bitrates of 0.925 kbps and 0.4 kbps and demonstrate poorer performance in SIM.

Results for Multilingual As shown in Table 2, TaDiCodec achieves the best WER on English,
Chinese, German, and Korean, with especially low WER on Chinese. It also outperforms all baselines
in speaker similarity across all evaluated languages.

Subject Evaluation Result As shown in Table 3, our proposed system achieves the highest CMOS
score among evaluated baselines. More details about subjective evaluation are shown in Appendix F.3.

4.2.2 Ablation Study

In this section, we explore several designs for TaDiCodec. For the ablation study, we report the
results on SeedTTS test-en and SeedTTS test-zh. 1) Vector Quantization Scheme: Replacing BSQ
with a standard VQ tokenizer (implemented following [21, 69] with an explicit codebook of the
same size as BSQ) leads to consistent degradation across all evaluation metrics. This indicates
that BSQ more effectively preserves both speech quality and intelligibility. 2) Tokenizer Size
Scaling: Reducing the decoder size to 160M results in substantial performance drops, particularly
in English WER. In contrast, increasing the decoder size results in marginal improvements. These
results also imply the existence of a scaling law for TaDiCodec, warranting further investigation
in future work. 3) Prompt Mechanism: The introduction of the prompt mechanism substantially
improves all three evaluation metrics. A plausible explanation is that the prompt serves as a global
conditioning signal (e.g., speaker identity), thereby reducing the quantizer’s burden to encode such
global information. 4) Inference Time Scaling: Increasing the number of inference steps to 50
yields marginal improvements, while reducing it to 10 leads to slight degradation. However, further
reduction to 5 steps results in a noticeable drop in performance. Considering the trade-off between
efficiency and quality, using 10 to 32 steps appears to be a reasonable operating range. We aim to
achieve comparable performance with fewer inference steps (e.g., 1-2 steps) by leveraging techniques
such as [70, 71, 72]. 5) Decoder Continued-training: We explore freezing the encoder and the VQ
module while only continued-training the decoder for an additional 400K steps, focusing solely on
reconstruction. This approach yields further improvements, with WER dropping from 3.02 to 2.73 for
English and from 1.11 to 0.94 for Chinese. SIM also improves for both languages. 6) Diffusion vs.
GAN: We also replace the diffusion loss with PatchGAN [73], but observe a noticeable performance
drop in both intelligibility and speech quality.

4.3 Zero-shot TTS

In this section, we present the zero-shot TTS results using TaDiCodec as the prediction target. We
evaluate two different language modeling approaches: autoregressive (AR) and masked generative
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Table 3: Subjective CMOS
scores. We randomly choose
40 samples from a in-the-wild
data source. Comparisons be-
tween different models can
also be found in demo page.

System CMOS
Ground Truth +0.28 ±0.25

Mimi [10] -1.79 ±0.13

WavTokenizer [28] -1.33 ±0.28

DualCodec [26] -0.92 ±0.31

X-codec 2 [5] -1.07 ±0.19

TaDiCodec 0.00 ±0.00

Table 4: Ablation study.

System Recon. Seed en Recon. Seed zh
WER SIM UTMOS WER SIM UTMOS

TaDiCodec 3.02 0.67 3.68 1.11 0.74 2.70

bsq → vq 3.30 0.64 3.44 1.25 0.72 2.46

w. prompt → wo. prompt 8.63 0.52 3.26 5.42 0.59 2.28

decoder size: 320M → 160M 7.96 0.63 3.60 2.02 0.73 2.89
decoder size: 320M → 480M 2.90 0.69 3.68 1.02 0.75 2.73

frame rate: 6.25 hz → 12.5 hz 2.57 0.69 3.58 1.09 0.75 2.68

Inference steps: 50 2.87 0.68 3.66 1.07 0.75 2.68
Inference steps: 10 3.85 0.67 3.65 1.23 0.74 2.69
Inference steps: 5 7.89 0.65 3.19 1.96 0.73 2.35

w. decoder continued-training 2.73 0.69 3.73 0.94 0.75 2.69

Table 5: The zero-shot TTS results. Beyond regular cases, we also evaluate on challenging scenarios,
including articulatory, code-switching, and cross-lingual settings.

System Frame Regular Articulatory Code-switching Cross-lingual
Rate en zh en zh en zh zh2en zh2en

WER SIM WER SIM WER SIM WER SIM WER SIM WER SIM WER SIM WER SIM
Baseline systems

NAR
MaskGCT [7] 50 2.40 0.71 2.28 0.77 14.50 0.69 10.35 0.74 38.39 0.63 19.73 0.76 8.47 0.70 16.22 0.56
F5-TTS [56] 93.75 3.02 0.63 3.87 0.71 14.13 0.61 19.54 0.66 35.35 0.54 32.63 0.68 19.93 0.64 13.78 0.46
AR
ARS [7] 50 3.55 0.68 4.37 0.75 15.98 0.68 24.07 0.71 48.59 0.63 59.71 0.76 15.22 0.70 24.30 0.56
CosyVoice 2 [41] 25 2.89 0.66 1.29 0.76 8.63 0.66 7.60 0.74 28.32 0.59 38.39 0.75 9.98 0.67 7.59 0.53
FireRedTTS [4] 25 8.53 0.46 1.27 0.65 14.47 0.45 18.81 0.64 15.03 0.38 23.97 0.63 3.87 0.34 9.04 0.48
Ints [68] 12.5 3.43 0.65 2.85 0.73 12.75 0.65 11.41 0.69 26.30 0.57 19.46 0.73 9.43 0.65 10.13 0.49
SparkTTS [6] 16 kHz 50 2.50 0.57 1.78 0.66 10.19 0.57 13.37 0.65 15.12 0.46 16.86 0.65 9.73 0.58 4.88 0.40
Llasa [5] 16 kHz 50 3.94 0.58 8.02 0.64 11.36 0.55 21.20 0.58 17.56 0.46 26.98 0.59 26.47 0.49 9.18 0.41

Ours

NAR
TaDiCodec-MGM 25 steps 6.25 3.69 0.65 1.51 0.75 10.67 0.63 8.97 0.71 14.76 0.57 20.01 0.73 9.95 0.65 4.75 0.48
TaDiCodec-MGM 10 steps 6.25 3.85 0.65 1.69 0.75 10.78 0.63 9.81 0.70 14.94 0.57 20.78 0.73 11.08 0.65 4.66 0.48
AR
TaDiCodec-AR 6.25 2.28 0.65 1.19 0.75 8.23 0.63 8.74 0.70 9.16 0.57 16.09 0.73 7.67 0.64 2.91 0.48

modeling (MGM) and we denote our models as “TaDiCodec-AR” and “TaDiCodec-MGM” respec-
tively. The results are reported on eight test sets, including SeedTTS test-en and SeedTTS test-zh,
referred to as Regular en and Regular zh, which are widely adopted benchmarks for TTS evalua-
tion [2, 3, 5, 6, 7, 41, 56]. In addition, we report performance on more challenging test sets, proposed
in [68], covering articulatory scenarios (such as repeated words and tongue twisters), code-switching,
and cross-lingual settings. We provide more details about the evaluation datasets in Appendix F.1.

Baselines We compare with a wide range of open-source and state-of-the-art baselines including: 1)
AR-based Systems: ARS [7], CosyVoice 2 [41], FireRedTTS [4], Ints [68], SparkTTS [6], Llasa [5];
2) NAR-based systems: MaskGCT [7] and F5-TTS [56]. We provide more detailed description of
these baselines in Appendix E.2.

Main Results We report the main results of our models and baselines on eight test sets in Table 5.
Our models exhibit significant improvements in intelligibility while maintaining speaker similarity
comparable to state-of-the-art zero-shot TTS systems. In terms of WER, TaDiCodec-AR achieves the
best performance on the Regular en and Regular zh test sets, reaching 2.28 and 1.19 respectively,
and outperforming all baselines. On more challenging test sets, TaDiCodec-AR demonstrates even
more pronounced advantages, for example, reducing WER from 15.03 to 9.16 on Code-switching en,
and from 4.88 to 2.91 on Cross-lingual en2zh. Notably, these improvements are achieved without
any task-specific optimization or reinforcement learning fine-tuning [74, 75] on WER, as done in
work such as [41]. For TaDiCodec-MGM, it consistently outperforms or matches the performance of
state-of-the-art NAR zero-shot TTS systems across all test sets. Even with only 10 inference steps,
which is significantly more efficient, it achieves a WER of 1.69 on Regular zh, compared to 2.28 from
MaskGCT. On more challenging test sets, such as Cross-lingual en2zh, it reaches 4.66 (vs. 13.78
from F5-TTS), and on Code-switching en, it achieves 14.94 (vs. 35.35 from F5-TTS). In terms of
SIM, both TaDiCodec-AR and TaDiCodec-MGM show clear advantages over recent systems such as
FireRedTTS, SparkTTS, and Llasa. Their SIM scores are slightly lower than those of MaskGCT and
CosyVoice 2, which operate at higher frame rates of 50 Hz and 25 Hz, respectively.
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Table 6: Results and RTF analysis for TTS model size scaling.

System Model RTF
Regular Articulatory Code-switching Cross-lingual

Size en zh en zh en zh zh2en zh2en
WER SIM WER SIM WER SIM WER SIM WER SIM WER SIM WER SIM WER SIM

Baseline systems

CosyVoice 2 [3] 0.5B 0.47 2.89 0.66 1.29 0.76 8.63 0.66 7.60 0.74 28.32 0.59 38.39 0.75 9.98 0.67 7.59 0.53
SparkTTS [3] 0.5B 0.59 2.50 0.57 1.78 0.66 10.19 0.57 13.37 0.65 15.12 0.46 16.86 0.65 9.73 0.58 4.88 0.40
Llasa [41] 1.0B 0.42 3.94 0.58 8.02 0.64 11.36 0.55 21.20 0.58 17.56 0.46 26.98 0.59 26.47 0.49 9.18 0.41

Ours

TaDiCodec-MGM 0.6B 0.12 3.69 0.65 1.51 0.75 10.67 0.63 8.97 0.71 14.76 0.57 20.01 0.73 9.95 0.65 4.75 0.48
TaDiCodec-AR-0.2B 0.2B 0.20 7.68 0.64 1.48 0.74 16.06 0.63 12.54 0.70 16.38 0.56 23.91 0.72 13.40 0.64 4.26 0.48
TaDiCodec-AR-0.5B 0.5B 0.22 3.88 0.65 1.15 0.75 12.09 0.63 9.04 0.70 13.58 0.57 17.10 0.73 8.79 0.64 4.07 0.48
TaDiCodec-AR-3B 3.0B 0.25 3.24 0.65 1.23 0.75 8.34 0.63 8.52 0.70 11.31 0.57 15.47 0.73 7.85 0.65 3.99 0.48

TaDiCodec-AR-4B 4.0B 0.29 2.28 0.65 1.19 0.75 8.23 0.63 8.74 0.70 9.16 0.57 16.09 0.73 7.67 0.64 2.91 0.48TaDiCodec-AR-4B w. vllm 0.13

Figure 3: Performance gap between reconstruction and generation. Each system includes both
English and Chinese variants. Bars represent WER and SIM for reconstruction and generation.
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(b) SIM gap between reconstruction and generation.

Model Size Scaling, Training and Inference Efficiency We demonstrate that our 6.25 Hz tokeniza-
tion is not only effective but also significantly more efficient for both training and generation. We
further explore how scaling the model size affects both performance and efficiency. Results are shown
in table 6. As described in the implementation details, we train all our TTS models for 300K steps.
We find that the models achieve the optimal evaluation results at around 200K steps. All models can
be trained in approximately one day under our setup, which uses 8 NVIDIA A100 GPUs with flash
attention and bf16 precision. For inference efficiency, we measure using Real-Time Factor (RTF). We
use a 5-second speech as a prompt to generate approximately 10 seconds of speech, sampling 5 times
and taking the average. The experiments show that even with 4.0B parameters, our AR model can
achieve an RTF of 0.29 without any deployment acceleration. With vLLM [76], the 4.0B AR model
can achieve an RTF of 0.13. Additionally, the 0.6B TaDiCodec-MGM model achieves an RTF of
0.12. We also observe a reasonable improvement in performance with increasing model parameters,
especially on challenging test sets (Articulatory, Code-switching, and Cross-lingual). Notably, our
0.5B model already matches or surpasses many state-of-the-art systems with an RTF of 0.22.

Reconstruction and Generation Gap In Figure 3, we present the performance gap between recon-
struction and generation across multiple systems. Our proposed system, TaDiCodec, demonstrates a
notably small performance gap: -16.5% for English WER (generation better than reconstruction),
-5.8% for English SIM, +26.5% for Chinese WER, and -0.0% for Chinese SIM. These results indi-
cate that TaDiCodec is highly generation-friendly—preserving most of the reconstruction quality
during generation. In contrast, existing systems such as Mimi exhibit a much larger degradation
(e.g., -104.5% en WER gap and -265.9% zh WER gap), suggesting that they are less effective in
transferring reconstruction capabilities to generation. This highlights the advantage of our design in
ensuring consistency between reconstructed and generated outputs.

5 Conclusion

In this work, we introduce TaDiCodec, a novel speech tokenizer that injects textual information
into the decoder and incorporates a prompt mechanism within an end-to-end diffusion autoencoder
training framework. TaDiCodec achieves an extremely low frame rate of 6.25 Hz and a corresponding
bitrate of 0.0875 kbps, using a single-layer codebook for 24 kHz speech. Beyond reconstruction,
we apply TaDiCodec to zero-shot TTS using both AR and MGM, demonstrating its effectiveness,
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efficiency, and suitability for generation. These results highlight TaDiCodec as a viable and innovative
solution for speech language modeling.
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A Implementation Details

A.1 Model Architecture

All our models follow the standard Transformer [51, 61] architecture, employ RoPE positional
encoding [62] and the SiLU [77] activation function. The encoder and decoder of the tokenizer and
MGM models use bidirectional attention, while the AR models adopt causal attention.

The TaDiCodec-AR-0.5B and TaDiCodec-AR-3B models are initialized from the textual LLMs
Qwen2.5-0.5B-Instruct and Qwen2.5-3B-Instruct [65], respectively, while TaDiCodec-AR-
4B is initialized from Phi-3.5-mini-instruct [64].

Table 7: Model configurations.

Model Hidden size Intermediate size Num.
hidden layers

Num.
attention heads

Num.
key value heads

Num.
parameters

TaDiCodec Encoder 8 1024 4096 16 16 ∼ 0.16B
TaDiCodec Decoder 16 1024 4096 16 16 ∼ 0.32B

TaDiCodec-AR-0.2B 672 2048 24 14 2 ∼ 0.25B
TaDiCodec-AR-0.5B 896 4864 24 14 2 ∼ 0.5B
TaDiCodec-AR-3B 2048 11008 36 16 2 ∼ 3B
TaDiCodec-AR-4B 3072 8192 32 32 32 ∼ 4B

TaDiCodec-MGM 1280 5120 16 1 6 16 ∼ 0.6B

B Flow Matching

We provide additional details of the flow matching framework used to train the diffusion decoder in
TaDiCodec. Flow matching [35] defines a continuous transformation from a prior distribution (e.g.,
Gaussian noise) to a target data distribution (e.g., mel-spectrograms) by learning a time-dependent
velocity field along an interpolated trajectory 𝒙𝑡 .

While multiple interpolation strategies can be used to construct 𝒙𝑡 , we adopt the optimal transport
path formulation [35, 52], instantiated in this work as simple linear interpolation. Specifically, given
a clean mel-spectrogram 𝒙 ∈ R𝑇×𝑑 and a noise sample 𝝐 ∼ N(0, 𝑰), we construct an intermediate
sample as:

𝒙𝑡 = 𝑡𝒙 + (1 − 𝑡)𝝐 , 𝑡 ∼ Uniform(0, 1), (4)
where 𝑡 is sampled uniformly from [0, 1], and 𝒙𝑡 denotes the noisy input at time 𝑡. The corresponding
ground-truth velocity is the temporal derivative of 𝒙𝑡 :

𝒗 =
𝑑𝒙𝑡
𝑑𝑡

= 𝒙 − 𝝐 . (5)

The diffusion decoder D𝜙 is trained to predict 𝒗, conditioned on the token sequence 𝒒 = Q(E𝜃 (𝒙))
and the associated text 𝒙𝑡𝑒𝑥𝑡 , using the following objective:

Ldiff = E(𝒙,𝒙𝑡𝑒𝑥𝑡 ) ,𝝐 ,𝑡
[(𝒙 − 𝝐) − D𝜙 (𝒒, 𝒙𝑡 , 𝑡, 𝒙𝑡𝑒𝑥𝑡 )

] . (6)

Inference At inference time, we start with a noise sample 𝒙0 = 𝝐 ∼ N(0, 𝑰) and solve the ordinary
differential equation:

𝑑𝒙𝑡
𝑑𝑡

= D𝜙 (𝒒, 𝒙𝑡 , 𝑡, 𝒙𝑡𝑒𝑥𝑡 ) (7)

from 𝑡 = 0 to 𝑡 = 1 using a simple Euler ODE solver over a discretized set of 𝑁 time steps.

Flow matching provides a stable and interpretable training signal by directly supervising the instanta-
neous direction in which a noisy sample 𝒙𝑡 should evolve to match the clean target 𝒙. In our setting,
it enables effective training of the speech tokenizer under low bitrate constraints.

C Binary Spherical Quantization

Binary Spherical Quantization (BSQ) [53] optimizes over an implicit codebook CBSQ =

{
− 1√

𝐿
, 1√

𝐿

}𝐿
,

which corresponds to the 𝐿-dimensional hypercube projected onto the unit sphere. Each corner
𝒄𝑘 ∈ CBSQ represents a unique discrete token 𝑘 ∈ {0, . . . , 2𝐿 − 1}.
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Given an encoder output E(𝒙), we first obtain a low-dimensional latent sequence 𝒉 ∈ R𝑇𝑞×𝐿 after
linear projection. BSQ then projects each vector 𝒉𝑡 in 𝒉 onto the unit sphere:

𝒖𝑡 =
𝒉𝑡

∥𝒉𝑡 ∥
, (8)

and performs binary quantization independently on each dimension:

�̂�𝑡 =
1
√
𝐿

sign(𝒖𝑡 ), (9)

where sign(𝑥) is the element-wise sign function, with sign(0) defined as 1 to ensure codewords lie on
the unit sphere. To enable gradient-based training, BSQ uses the Straight-Through Estimator (STE)
for backpropagation:

signSTE (𝑥) = sg(sign(𝑥) − 𝑥) + 𝑥, (10)
where sg(·) denotes the stop-gradient operation.

For each vector 𝒉𝑡 , the corresponding discrete token index is computed as:

𝑘𝑡 =

𝐿∑︁
𝑖=1

1[𝒉𝑡,𝑖>0] · 2𝑖−1, (11)

where 1[ · ] is the indicator function. This efficient implicit code assignment scheme allows fast token
computation and decoding via bitwise operations.

BSQ offers several appealing properties: it avoids the need for an explicit learnable codebook;
its quantization error is bounded, allowing the entire system to be trained without a commitment
loss [54].

In this work, we use 𝐿 = 14, resulting in a codebook size of 214 = 16384.

D Masked Generative Models

In this section, we provide a brief introduction to masked generative models (MGMs) [7, 59, 78]. Let
𝒙 = [𝑦1, 𝑦2, . . . , 𝑦𝑛] denote a discrete sequence of length 𝑛. At each time step 𝑡, we define the masked
input as 𝒙𝑡 = 𝒙 ⊙ 𝒎𝑡 , where 𝒎𝑡 = [𝑚𝑡 ,1, 𝑚𝑡 ,2, . . . , 𝑚𝑡 ,𝑛] is a binary mask. Specifically, 𝑥𝑖 is replaced
with a special [MASK] token if 𝑚𝑡 ,𝑖 = 1, and remains unchanged if 𝑚𝑡 ,𝑖 = 0. Each mask element 𝑚𝑡 ,𝑖

is independently sampled from a Bernoulli distribution with parameter 𝛾(𝑡), where 𝛾(𝑡) ∈ (0, 1] is a
masking schedule function (e.g., 𝛾(𝑡) = sin

(
𝜋𝑡
2𝑇

)
for 𝑡 ∈ (0, 𝑇]). The fully unmasked input is denoted

by 𝒙0 = 𝒙.

MGMs are trained to reconstruct the original sequence from partially observed inputs, conditioned
on an optional context 𝒄 (e.g., in this paper, text 𝑥𝑡𝑒𝑥𝑡 is condition), by modeling the conditional
distribution 𝑝𝜃 (𝒙0 | 𝒙𝑡 , 𝒄). The model parameters 𝜃 are optimized by minimizing the expected
marginal cross-entropy over the masked tokens:

Lmask = −E𝒙,𝑡 ,𝒎𝑡

𝑛∑︁
𝑖=1

𝑚𝑡 ,𝑖 · log 𝑝𝜃 (𝑦𝑖 | 𝒙𝑡 , 𝒄). (12)

At inference time, MGMs generate tokens in parallel via iterative decoding. The process begins with
a fully masked sequence 𝒙𝑇 . Assuming a total of 𝑆 decoding steps, at each step 𝑗 ∈ {1, . . . , 𝑆}, a
prediction �̂�0 is sampled from 𝑝𝜃 (𝒙0 | 𝒙𝑇−( 𝑗−1) · 𝑇

𝑆
, 𝒄). Then, ⌊𝑛 · 𝛾(𝑇 − 𝑗 · 𝑇

𝑆
)⌋ tokens are selected

based on confidence scores to be remasked, resulting in a new masked sequence 𝒙𝑇− 𝑗 · 𝑇
𝑆

.

The confidence score for �̂�𝑖 in �̂�0 is given by 𝑝𝜃 (𝑦𝑖 | 𝒙𝑇−( 𝑗−1) · 𝑇
𝑆
, 𝒄) if the position 𝑖 was masked;

otherwise, its score is set to 1, indicating that unmasked tokens will not be remasked. The ⌊𝑛 · 𝛾(𝑇 −
𝑗 · 𝑇

𝑆
)⌋ tokens with the lowest confidence scores are selected for masking.

Note that the method for computing confidence scores is not unique. For example, [79] propose
Token-Critic, a separate critic model trained to estimate token-wise confidence, thereby guiding the
sampling process. In addition, [79, 80] suggest that masked generative modeling can be interpreted
as a simplified form of discrete diffusion.

In this work, we develop MGM models for text-to-token. Given the low token rate of 6.25 Hz, the
task is relatively easy to model, and 10 to 25 inference steps are sufficient to achieve good results.
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E Baselines

E.1 Speech Tokenizer

EnCodec [19] A Residual Vector Quantization (RVQ)-based neural audio codec operating at a
frame rate of 75 Hz. We use two codebooks for inference, achieving a bitrate of 1.5 kbps. We use the
official checkpoint1.

DAC [21] An improved VQGAN-based [79] codec that projects latent features onto a low-
dimensional space (e.g., 8 dimensions) prior to quantization. We reproduce two variants: one
utilizing three codebooks at a 25 Hz frame rate, and the other a single codebook at a 75 Hz frame
rate. Both configurations operate at a token rate of 75 Hz and achieve a bitrate of 0.75 kbps.

SpeechTokenizer [27] Enhances first-layer speech tokens via semantic distillation using features
from HuBERT [30]. This tokenizer operates at 50 Hz and we use two codebooks for inference. We
use the official checkpoint2.

Mimi [10] Follows the design of SpeechTokenizer but utilizes WavLM [28] for semantic distillation.
The tokenizer employs eight codebooks, each of size 2,048, at a 12.5 Hz frame rate, resulting in a
bitrate of 1.1 kbps. We use the official checkpoint3.

DualCodec [26] A state-of-the-art, low-frame-rate, semantically-enhanced neural audio codec
designed for speech generation. DualCodec directly encodes SSL representations [42] into first-layer
codec tokens. It adopt a configuration with a 12.5 Hz token rate and a 8-layer codebook hierarchy.
The first codebook contains 16,384 entries, while the remaining five each contain 4,096 entries,
yielding a bitrate of 1.225 kbps. We use the official checkpoint4.

BiCodec [6] A semantically-enhanced tokenizer with a single-layer codebook. It discretizes audio
into semantic tokens based on features from wav2vec 2.0 [29]. It operates at a token rate of 50 Hz
with a codebook size of 8,192, achieving a bitrate of 0.65 kbps. We use the official checkpoint5.

X-codec 2 [5] Employs a dual-encoder design: a semantic encoder based on Wav2Vec2-BERT [81]
and an acoustic encoder for low-level acoustic features. Their outputs are concatenated prior to
quantization. It operates at a token rate of 50 Hz with a codebook size of 65,536, yielding a bitrate of
0.8 kbps. We use the official checkpoint6.

WavTokenizer [23] A single-codebook tokenizer trained on 800K hours of mixed-domain audio. It
operates at a 75 Hz token rate with a codebook size of 4,096, resulting in a bitrate of 0.9 kbps. We
use the official checkpoint7.

BigCodec [22] A single-codebook tokenizer with scaled model size. It integrates sequential
modules into convolutional architectures and applies low-dimensional quantization to enhance code
utilization. It operates at an 80 Hz token rate with a codebook size of 8,192, yielding a bitrate of 1.04
kbps. We use the official checkpoint8.

TAAE [24] A transformer-based tokenizer using Finite Scalar Quantization (FSQ) [82] for speech
tokenization. It operates at a 25 Hz token rate with a codebook size of 46,656, resulting in a bitrate of
0.4 kbps. We use the official implementation9.

SemantiCodec [40] Combines a semantic encoder (AudioMAE [83] with k-means clustering) and
an acoustic encoder, featuring a diffusion decoder for reconstruction. It operates at a 50 Hz token rate,
with codebook sizes of 16,384 (semantic) and 2,048 (acoustic), achieving a bitrate of 0.675 kbps. We
use the official implementation10.

1https://huggingface.co/facebook/encodec_24khz
2https://github.com/ZhangXInFD/SpeechTokenizer
3https://huggingface.co/kyutai/mimi
4https://pypi.org/project/dualcodec/0.1.2/
5https://github.com/SparkAudio/Spark-TTS
6https://huggingface.co/HKUSTAudio/xcodec2
7https://huggingface.co/novateur/WavTokenizer-large-speech-75token
8https://huggingface.co/Alethia/BigCodec
9https://github.com/Stability-AI/stable-codec

10https://github.com/haoheliu/SemantiCodec-inference
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Vevo Tokenizer [32] A two-stage tokenizer utilizing features from HuBERT [30], followed by VQ
and a diffusion decoder. It employs a single codebook of size 8,192 at a 50 Hz token rate, resulting in
a bitrate of 0.65 kbps. We use the official checkpoint11.

FireRedTTS Tokenizer [4] A single-codebook tokenizer trained in two stages. Transforms speech
into semantic embeddings via features from HuBERT [30], followed by a ResNet-based encoder and
quantization. It uses a 40 ms frame shift and a codebook size of 16,384. A global embedding is also
incorporated, and decoding is performed using flow matching. Its implementation is available12.

CosyVoice Tokenizer [3] A single-codebook tokenizer trained in two stages. The encoder is
initialized from an ASR model [36] and subsequently trained with a supervised loss. A flow matching
model is used to predict mel-spectrograms. It operates at a 25 Hz token rate and 0.3 kbps bitrate. Its
code is available13.

CosyVoice 2 Tokenizer [41] An improved version of CosyVoice that replaces VQ with FSQ. It
operates at a 25 Hz token rate and 0.325 kbps bitrate. Its official implementation is available14.

Ints Tokenizer [68] Combines the DualCodec [26] semantic encoder with a flow matching decoder,
similar to the CosyVoice variants. It uses a single codebook with 16,384 entries at a 12.5 Hz token
rate, resulting in a bitrate of 0.175 kbps. The resulting TTS model, Ints, demonstrates state-of-the-art
intelligibility [68].

E.2 Zero-shot TTS

F5-TTS [56] An open-source flow matching-based TTS systems. It follows E2 TTS [57] and uses
a flow matching transformer [35, 55] to convert the text to acoustic features directly [56].

MaskGCT [7] An open-source large-scale MGM-based TTS system that eliminates the need for
explicit alignment information between text and speech supervision, as well as phone-level duration
prediction. We use the official code and checkpoint15 which is trained on Emilia [60].

ARS [7] Introduced as an AR baseline by [7]. and referred to as “AR + SoundStorm” in the original
paper [7]. It adopts a cascaded architecture, including the AR text-to-token and the NAR MGM
codec-to-waveform [46].

CosyVoice 2 [41] An open-source, large-scale zero-shot TTS system built upon an AR model
initialized from Qwen2.5-0.5B-Instruct, which predicts speech codes extracted by the CosyVoice
2 tokenizer.

FireRedTTS [4] An open-source, large-scale AR-based zero-shot TTS system, which predicts
speech codes extracted by the FireRedTTS tokenizer.

Ints [68] An open-source, large-scale zero-shot TTS system built upon an AR model initialized from
Phi-3.5-mini-instruct, which predicts 12.5 Hz speech codes extracted by the Ints tokenizer.

SparkTTS [6] An open-source, large-scale zero-shot TTS system built upon an AR model initial-
ized from Qwen2.5-0.5B-Instruct, which predicts speech codes extracted by the BiCodec [6].

Llasa [5] An open-source, large-scale zero-shot TTS system built upon an AR model initialized
from Llama3.2-1B [84], which predicts speech codes extracted by the X-codec 2 [5].

F Evaluation

F.1 Test Sets

SeedTTS test-en We adopt a test set introduced in Seed-TTS [2], consisting of 1,000 samples
drawn from English public corpora, including the Common Voice dataset [85]. We refer to this set as

11https://github.com/open-mmlab/Amphion/tree/main/models/vc/vevo
12https://github.com/FireRedTeam/FireRedTTS
13https://github.com/FunAudioLLM/CosyVoice
14https://github.com/FunAudioLLM/CosyVoice
15https://github.com/open-mmlab/Amphion/blob/main/models/tts/maskgct
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“Regular en” and use it for zero-shot TTS evaluation (Table 5 and Table 6). Additionally, it is used for
evaluating the performance of our tokenizer.

SeedTTS test-zh We adopt a test set introduced in Seed-TTS, comprising 2,000 samples drawn
from Chinese public corpora, including the DiDiSpeech dataset [86]. We denote it as “Regular zh”
for zero-shot TTS evaluation.

Articulatory en, Articulatory zh These sets are introduced in [68] and contain tongue twisters and
repeated texts. For Chinese, the SeedTTS test-hard set is used directly. For English, reference speech
prompts are taken from SeedTTS test-en, while the corresponding articulatory texts are constructed
using Deepseek-V3 [87] to match the style of SeedTTS test-hard. Each set contains 400 samples. An
example:

Prompt text:
Salmon is one of the most popular fish and very delicious, though usually not sustainable.

Target text:
A big black bug bit a big black bear, but the big black bear bled black blood from the bite.

Code-switching en, Code-switching zh These sets are introduced in [68], consist of target texts that
mix English and Chinese. Based on SeedTTS test-en and test-zh, the reference speech prompts are
kept unchanged, while Deepseek-V3 is employed to convert the texts into a code-switching format.
Each set contains 500 samples. An example:

Prompt text:
创下奥运史上拒绝奥运圣火入境的首例。

Target text:
在他 execution之后 Ogilvie的 followers被 rounded up并 put in jail.

Cross-lingual zh2en, Cross-lingual en2zh These sets are introduced in [68], two types of cross-
lingual samples are constructed: zh2en and en2zh, each comprising 500 samples. The zh2en set pairs
Chinese reference speech from SeedTTS test-zh with English target text from SeedTTS test-en, while
the en2zh set follows the reverse configuration. Each set contains 500 samples. An example:

Prompt text:
调整海外购买住宅征收额外印花税率，从百分之三调整到百分之七而言。

Target text:
The recluse from Lithuania and his compatriot were making up stories about mermaids and fays.

Multilingual test sets We additionally construct four multilingual test sets to evaluate tokenizer
reconstruction in non-English languages, including French (fr), German (de), Japanese (ja), and
Korean (ko). For each language, we randomly sample 300 utterances from Common Voice [85].

F.2 Objective Evaluation

Frame Rate, Token Rate, Bitrate Frame rate means the speech is compressed into how many
frames per second (measured in Hz), while each frame may contain multiple tokens; token rate
refers to how many discrete tokens are produced per second; bitrate indicates the total amount of
information retained, computed as token rate multiplied by the number of bits per token (measured in
kbps), and reflects the overall compression level of the tokenizer.

For example, suppose a speech tokenizer operates at a frame rate of 25 Hz, meaning the input audio
is compressed into 25 frames per second. If each frame contains 2 codebook tokens (i.e., 2 layers of
quantization), and each codebook has a size of 2048 (requiring 11 bits per token since 211 = 2048),
then:

• Token Rate = 25 frames/sec × 2 tokens/frame = 50 tokens/sec

• Bitrate = 50 tokens/sec × 11 bits/token = 550 bps = 0.55 kbps
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This means the speech is represented with a bitrate of 0.55 kbps, indicating a high compression level
while retaining discrete structure for downstream modeling.

WER Word Error Rate (WER) is employed to assess the intelligibility of reconstructed or gen-
erated speech. We adopt two automatic speech recognition (ASR) models for WER computation:
whisper-large-v316 [36] and paraformer-zh17 [37]. The former is used for non-Chinese ut-
terances, while the latter is applied to Chinese speech, following established practices in recent
studies [2, 3, 7, 58].

SIM Speaker similarity (SIM) is computed as the cosine similarity between speaker embeddings
extracted from the prompt and the generated utterance. We use the WavLM-TDNN model18 [28] for
speaker embedding extraction, following [1, 2, 7, 45, 55].

UTMOS Speech naturalness and perceptual quality are evaluated using UTMOS [88], a Mean
Opinion Score (MOS) prediction system. UTMOS combines ensemble learning of strong and weak
learners: the strong learners are fine-tuned self-supervised learning (SSL) models with architectural
enhancements, while the weak learners apply lightweight regression on SSL features. We use the
official UTMOS checkpoint19.

F.3 Subject Evaluation

We conduct a subjective evaluation of speech tokenizers in terms of audio quality using the Compara-
tive Mean Opinion Score (CMOS):

• System Interface: Users listen to two speech samples, A and B, to compare their speech
quality.

• Instruction: Participants are asked, “Which speech has better audio quality?”.

• Evaluation Criteria: Five response options: A +2 (Sample A has much better audio quality),
A +1 (Sample A has slightly better audio quality), Tie (Both have equal audio quality), B +1
(Sample B has slightly better audio quality), and B +2 (Sample B has much better audio
quality).

Figure 4 shows a shotscreen of the evaluation system.

Figure 4: Shotscreen of the subjective evaluation system.

We randomly select 40 samples from an in-the-wild dataset. Each of the six systems: Ours, X-codec
2, DualCodec, WavTokenizer, Mimi, and Ground Truth, generates all 40 samples. For evaluation,
each baseline system is compared against ours, resulting in a total of 40× 5 = 200 sample pairs. Each
pair is evaluated by two human listeners.

G Limitations and Future Work

TaDiCodec achieves an extremely low frame rate of 6.25 Hz and a corresponding bitrate of 0.0875
kbps using a single-layer codebook for 24 kHz speech compression, while demonstrating strong

16https://huggingface.co/openai/whisper-large-v3
17https://huggingface.co/funasr/paraformer-zh
18https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_

verification
19https://huggingface.co/spaces/sarulab-speech/UTMOS-demo
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performance in both reconstruction and text-to-speech tasks in terms of intelligibility, speaker
similarity, and speech quality. There remains room for improvement and several promising directions
for future work: 1) TaDiCodec employs a diffusion autoencoder for tokenization and de-tokenization,
which involves multiple steps during inference. Compared to GAN-based tokenizers, this results in
higher decoding latency. Future work may explore distillation or more powerful generative models
to enable single-step inference while maintaining performance. 2) While TaDiCodec has shown its
effectiveness for speech language modeling through zero-shot TTS, it is worth further evaluating its
applicability in speech understanding and dialogue systems. 3) TaDiCodec currently requires text
input for the decoder. It would be valuable to explore unified models that can transcribe, tokenize,
and reconstruct speech simultaneously, enabling one model for joint understanding, compression,
and reconstruction.

H Broader Impacts

Our model enables high-quality speech modeling, which can benefit applications such as personalized
speech interfaces, speech restoration, and accessibility tools. However, it also poses risks of misuse,
including voice spoofing and unauthorized impersonation. These risks are particularly concerning in
scenarios involving biometric authentication or deceptive media. To prevent misuse, we advocate for
the development of reliable deepfake detection tools, watermarking methods for synthetic speech,
and reporting mechanisms to flag suspected abuse.
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